Low-cost Platform Technology for **LWIR Sensor Arrays**

for Use in Automotive Night Vision and Other **Applications**

I. Herrmann; M. Hattaß; D. Oshinubi; T. Pirk; C. Rettig; K.-F. Reinhart; E. Sommer

Robert Bosch GmbH, Corporate Sector Research and Advance Engineering Microsystem Technologies, P.O Box 10 60 50, 70049 Stuttgart, GERMANY

Contents

- Introduction:
 Multi-spectral Approach to Automotive Night-vision
- → ADOSE
- Low-end Requirements
- How to Do "Low-cost"
- ADOSE Achievements
- Ascend From Low-end
- → RTFIR
- Conclusion and Outlook

Multi-spectral Approach to Automotive Night-Vision

- NIR-CMOS imager presents a natural and high-quality view to user
- FIR imager gives temperature information
- NIR allows state-of-the art detection of road-signs, lane boundaries etc.
- FIR allows differentiation of "dead" and "living"
- Data fusion of NIR and FIR allows high alarm rates with low false positives

ADOSE

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement n° 216049 - ADOSE Project."

ADOSE Project no. 216049:
Reliable Application Specific Detection of Road Users
with Vehicle On-Board Sensors

ADOSE Website: http://www.adose-eu.org

Low-end Requirements

Example Scenario:

- Extra-urban
- Single-lane road (i.e. no Autobahn)
- \rightarrow $v_{max} = 100 \text{ km/h}$
- Detection distance 120m
- Minimum hot-spot size for a human 1 x 5 (hor. X vert.)
- → Thermal resolution 0.5 K

FIR camera requirements		Remark	
Hor. Field of View (FOV):	± 12°	For data fusion with NIR	
Angular Resolution:	4,18 pixel / $^{\circ}$	Defined by smallest object to be resolved @ 120m	
Object Temperature resolution:	< 500 mK	for hot-spot detection; no image display; NETD<300mK for chip @F#1 optics	
Frame Response:	> 12,5 Hz	for 3 verifications of object in the NIR image	
Array Size:	100 x 50 pixels	Defined by FOV and angular resolution	
Wavelength Range:	7-14 µm	Spectral emission maximum of vulnerable road users	

How to Do "Low-cost"

Take a well-established, high volume MEMS-process ...

Pressure sensor

... and use it for a completely different type of sensor

Far-infrared-array

ADOSE Achievements

- Proof-of-concept demonstrator finished
 - 42 x 28 pixels
 - 5 Hz
 - .5 K NETD@F#1
- First ADOSE silicon ready
 - 100 x 50 pixels
 - 12.5 Hz thermally, 25 Hz read-out
 - .3 K NETD@F#1 (target)
- Transfer to Bosch MEMS facility started
- Chip-on-board assembly verified (with FhG IZM, Berlin)
- Demonstrator boards, housing and optics ready (with FhG IZM, UMICORE)

Ascend From Low-end (RTFIR development goals)

Shrink down the pixel structure

distribution, as well as in the event of applications for industrial property rights.

- Use the capabilities of more recent CMOS for more ROIC functionality
- Implement a new low-noise read-out concept
- Utilize a new wafer-level encapsulation technology to reduce chip cost
- Improve the absorption
- Develop a new low-cost FIR-optics process (@ FhG IWM)

	ADOSE	RTFIR
Pixel Pitch [µm]	100	28
Absorber area [µm²]	4700	345
Fill factor [%]	47	44

CR/ARY3-He | 17/05/2011 | © Robert Bosch GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction, editing

RTFIR

"Thin Un-cooled (RT) FIR-Imager With Nano-scaled Absorption Layers"

Conclusion and Outlook

- Concept for low-cost, low-end FIR imager was proven
- → 1st gen. BOSCH low-cost FIR chip (100x50) in transfer to fab
- → Low-cost platform development for 2nd gen. (QVGA+) started
- Next steps:
 - Pixel shrink
 - New ASIC
 - New wafer-level encapsulation
 - Low-cost optics

