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Abstract. This paper presents a silicon retina-based stereo vision sys-
tem, which is used for a pre-crash warning application for side impacts.
We use silicon retina imagers for this task, because the advantages of
the camera, derived from the human vision system, are high temporal
resolution up to 1ms and the handling of various lighting conditions with
a dynamic range of ∼120dB. A silicon retina delivers asynchronous data
which are called address events (AE). Different stereo matching algo-
rithms are available, but these algorithms normally work with full frame
images. In this paper we evaluate how the AE data from the silicon
retina sensors must be adapted to work with full-frame area-based and
feature-based stereo matching algorithms.

1 Introduction

Advanced Driver Assistance Systems (ADAS) currently available on the market
perform a specific function like lane departure warning (LDW), collision warning,
or high beam assist. ADAS are entering only slowly into the market because
cost-effective solutions are still missing, which would allow extensive market
penetration and an increase in number of sensors and supported safety functions.

For example BMW offers for the latest series 5 and 6 a LDW system as op-
tional equipment which costs ∼950$. This price is for vehicles in the higher price
segment acceptable, but not for low price and economy vehicles. Recent studies
(2005 [12]) have been made to evaluate customer desirability and willingness to
pay for active and passive safety systems in passenger cars. The result is that an
acceptable price is below the current market prediction, so manufactures need
to find cheaper solutions to increase the customer acceptance.

In the EU-funded project ADOSE1 we use a Silicon Retina Sensor for reduc-
ing the costs. That kind of sensor overcomes limitations of classical vision sys-
tems with high temporal resolution, allowing to react to fast motion in the visual
field, on-sensor pre-processing to significantly reduce both memory requirements
and processing power, and high dynamic range for dealing with difficult lighting
situations encountered in real-world traffic situations. Efficient pre-processing of
visual information on the focal plane of the silicon retina vision chip allows cost

1 www.adose-eu.org



effective computation of scene depth using a single low-cost, low-power Digital

Signal Processor (DSP).
The silicon retina is specifically tailored to serve as a pre-crash sensor for

side impacts (e.g., for the pre-ignition and preparation of a side airbag). In this
paper we describe the principle of this sensor technology and how we use the
specific silicon retina data in stereo matching algorithms.

2 Bio-inspired silicon retina imagers

The silicon retina imager is derived from the human vision system and is repre-
sented by an analog chip which delivers intensity changes as output. Fukushima
etal [2] describe in their work an early implementation of an artificial retina.
The first retina imager on silicon basis is described in the work of Mead and Ma-
howald [7], which have also established the term Silicon Retina. The work from
Litzenberger etal [5] describes a vehicle counting system using the same silicon
retina sensor described in the work from Lichtsteiner etal [6], which is developed
at the AIT2/ETH3 and also used for the described stereo vision system in this
paper.

The silicon retina delivers, for each pixel that has exceeded a defined intensity
change threshold, the coordinates of the pixel, a timestamp and the polarity
which signals a rising intensity (ON-event) or a falling intensity (OFF-event).
The description of the exact data structure from the silicon retina is described
in section 2.1. For the setting of the threshold, which defines when an intensity
change should trigger an AE, 12 different bias voltages are available in the silicon
retina sensor. Each pixel of the silicon retina is connected via an analog circuit
to its neighbors which are necessary for the intensity measurements. Based on
these additional circuits on the sensor area, the density of the pixels is not as
high as on conventional monochrome/color sensors, which results for our sensor
in a resolution of 128 × 128 pixels with a pixel pitch of 40µm.

Due to the low resolution and the asynchronous transmission of AEs from
pixels where an intensity change has been occurred, a temporal resolution up to
1ms is reached. In figure 1 on the right side the speed of a silicon retina imager
compared to a monochrome camera (Basler A601f) is shown. The top image
pair on the right shows a running LED pattern with a frequency of 45Hz. Both
camera types recognize the LED movement. The frequency of the LED pattern
in the bottom right image pair is 450Hz. The silicon retina can capture the
LED hopping sequence, but the monochrome camera can not capture the fast
moving pattern and therefore, more than one LED is visible in a single image.
A further benefit of the silicon retina is the high dynamic range up to 120dB for
various lighting conditions, which is demonstrated in figure 1 on the left side.
The top left image pair shows a moving hand in an average illuminated room
with an illumination of ∼1000 lm

m2 . In both images the hand is clearly visible. In
the bottom left image pair a moving hand is captured from both camera types
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too, but in a room with an illumination of ∼5 lm
m2 . Here, only the silicon retina

sensor recognizes the hand.

dynamic range temporal resolution

monochrome camera monochrome camerasilicon retina silicon retina

Fig. 1. Left : The top pair shows a hand moved under office illumination conditions
(∼1000 lm

m2 ) and the lower pair on the left side shows the same scene with an illumination

of ∼5 lm

m2 . Right : The LED running speed in the top image pair is 45Hz and in the
lower image pair on the right 450Hz.

2.1 Address-Event data format

The silicon retina is free running and sends only data if the intensity changes
generate AEs. These AEs can happen anytime and therefore the silicon retina
sensor adds a timestamp, represented by a 32 bit value, to the AEs (location
and polarity) and forwards the AEs to the processing unit. The location of the
event is addressed by its coordinates (x,y). Both values (x,y) are mapped to a 7
bit representation in the data format. The polarization p of an event is described
by one bit. A high bit denotes an OFF-event and low bit an ON-event.

Table 1 shows a comparison between a monochrome sensor and a silicon
retina imager with the same resolution for a typical application. Both imagers
have different types of data representation and therefore the calculation of the
transfer rate is carried out, which makes a direct comparison of both sensors
possible. For future purpose the AE data structure will be improved so that the
bits/AE decreases and the transfer performance will increase. The data amount
of a silicon retina imager with an average address event rate of 50000 AE/s is at
the moment ∼ 2.3 times lower than a monochrome sensor with 60fps.

2.2 Address-Event converter

Before the AE data can be used with full frame image processing algorithms,
the data structure is changed into a frame format. For this reason an address
event to frame converter has been implemented.

The silicon retina sensor delivers permanently ON- and OFF-events, which
are marked with a timestamp tev. The frame converter collects the address events
over a defined time period ∆t = [tstart : tend] and inserts these events into a



Table 1. Data rate of a monochrome sensor and a silicon retina imager

128 × 128 monochrome sensor 128 × 128 silicon retina

Transfered Data 983.040a pix/s 50.000b AE/s

Data Size 8c bit/pix 64d bit/AE

Transfer rate 7.5 MBit/s ∼3.2 MBit/s

a at 60 fps
b average address events (AE) per second (measured with fast move-

ments in front of the camera =⇒ distance ∼ 1m)
c 256 grayscale values
d 32 bit timestamp, 15 bit data and 17 bit reserved

frame. After the time period a frame is closed and the generation of the next
frame starts. The definition of an event frame is

AEframe =

∫ tend

tstart

AExy(tev)dtev (1)

Different algorithm approaches need a different frame format. The silicon
retina stereo camera system in this paper is evaluated with two algorithms de-
rived from two different categories. The first algorithm is an area-based approach,
which works with the comparison of frame windows. The second algorithm is a
feature-based variant which matches identified features. Both categories need
differently constructed frames from the converter. Due to this reason, the con-
verter offers configurations to fulfil these requirements. Figure 2 shows on the left
side the output frame of the converter with the collected ON- and OFF-events.
The resolution of the timestamp mechanism of the silicon retina is 1ms, but for

Fig. 2. Different results of AE to frame converter

the algorithm used in this paper a ∆t of the 10ms and 20ms is used. The ∆t is
changed for different conditions which produce a different number of events.

The image in the middle of figure 2 shows a frame built for an area-based
matching algorithm. For this reason each event received in the defined time



period is interpreted as a gray value, with

AEframe =

∫ tend

tstart

graystep(AExy(tev))dtev . (2)

The background of the frame is initialized with 128 (based on a 8 bit grayscale
model) and each ON-event adds a gray value and an OFF-event subtracts one.
In 3 the function for generating a gray value frame is shown. The 8 bit grayscale
model limits the additions and subtractions of the ∆grayvalue and saturates if
an overflow occurs.

graystep(AExy(tev)) =

{

AEframexy
+ ∆grayvalue AExy(tev) = ONevent

AEframexy
− ∆grayvalue AExy(tev) = OFFevent

(3)
The right image in figure 2 shows a frame built for a feature-based image

processing algorithm. Multiple received events within the defined time period are
overwritten in this case of frame building. Equation 4 shows the frame building
and the used simplify function is illustrated in (5).

AEframe =

∫ tend

tstart

simplify(AExy(tev), convon)dtev (4)

The simplify function gets a second parameter (convon) to decide the event
variant (only ON or OFF). This frame is prepared for different kind of feature-
based algorithms and also for algorithms based on segmentation.

simplify(AExy(tev), convon) =















ONev AExy(tev) = ONev ∧ convon = 1
ONev AExy(tev) = ONev ∧ convon = 0
ONev AExy(tev) = OFFev ∧ convon = 1

0 AExy(tev) = OFFev ∧ convon = 0
(5)

Both specialized generated frames (middle and right in figure 2) can optionally
filtered with a median filter to reduce noise and small objects. With this settings
every ∆t a new frame from the left and right address event stream is generated.
These frames are now handled as images for the stereo matching algorithms
described in the next section.

3 Stereo matching

The main task of this stereo vision sensor is the extraction of depth information
from the viewed scenery for the application mentioned in section 1. It is a chal-
lenging task to handle the asynchronous incoming AEs for the stereo matching
process. Hess [4] used a global disparity filter in his work to find a main disparity
of the received events. In a second approach he worked with a general disparity
which considers each incoming event separately, but this is a time consuming
task and needs a new kind of a stereo matching implementation. In our work
we evaluate the opportunity to use standard stereo vision algorithms for AE
data from silicon retina imagers. In section 3.1 the suitability of an area-based
algorithm is analyzed and a feature-based approach is described in section 3.2.



3.1 Area-based approach for AE stereo matching

For the evaluation of the area-based stereo matching of AE images a simple
correlation method is used. In the work from Scharstein and Szeliski [8] many
different area-based approaches are compared and evaluated, and for the silicon
retina stereo matching a Sum of Absolute Differences (SAD) algorithm is used.
Before the silicon retina output is processed by the SAD algorithm the data
stream is converted into a grayvalue frame (Figure 2 in the middle). A block
matching, only with ON- and OFF- events, would produce a lot of similar costs
and a lot of mismatches may appear. The grayscale images have more than two
values and therefore, the statistical significance of the block is larger.

Derived from the application scenario the distance of a closer coming object
must be estimated. Therefore, the distance measurement does not have to be
exact and the search space is restricted to one horizontal scanline without a
prior rectification step. For each pixel the disparity is calculated and after that
the average disparity is calculated which represents the main disparity of the
whole object. Results of the algorithm are shown in section 4.2.

3.2 Feature-based approach for AE stereo matching

For feature-based stereo matching, features must be extracted from the image.
Shi and Tomasi [10] give more detail about features in their work. For the evalua-
tion of the feature-based stereo matching with silicon retina cameras, a segment
center matching approach is chosen. Tang etal [11] describe in their work an
approach for matching feature points. An assumption, derived from the appli-
cation scenario is, that an object comes closer to the sensor and the distance of
the object must be estimated. That means no occlusions with other objects and
exact distance measurements of each pixel respectively the closer coming object.

Additional processing is required for the extraction of the segment centers,
but usually the stereo matching process is less costly. For the segment extraction
a morphological erosion followed by a dilation is applied [3]. After that the flood

fill labeling [1] function is used, which labels connected areas (segments). A pixel-
by-pixel matching is not possible and therefore, it must be defined how the whole
segment shall be matched. In a first step the features are ordered downwards
according to their area pixel count. This method is only useful, if the found
segments in the left and right image are nearly the same. As representative point
of the segment the center is chosen. The center of the corresponding segment in
the left and right frame can differ. Due to this reason the confidence of the found
centers are checked. This mechanism checks the differences of center points, if
they are too large, the center points are ignored for the matching. If the center
points lie within the predefined tolerances, the disparity is calculated which
stands for the disparity of the whole object. Results of the algorithm are shown
in section 4.3.



4 Experimental results and discussion

This section presents results of the stereo matching on AE frames. In a first step
the sensor setup and configuration used for the tests are described.

4.1 Stereo sensor setup

The stereo system consists of two silicon retina imagers and are mounted on
a 0.45m baseline. Both cameras are connected to an Ethernet switch, which
joins both address event data streams packaged in UDP packets and sends it to
the further processing unit. The left and the right camera must have the same
knowledge of time, therefore we have realized a master-slave synchronization
concept where the master camera sends the timestamp to the slave. In a first
step for the offline processing and algorithm evaluation a PC-based system is
used.

The silicon retina cameras of the stereo vision system are also equipped with
lenses which must be focussed before they can be used. Due to the fact that an
output is only delivered if intensity changes are recognized in front of the sensor,
a stimuli is necessary which generates an continuous sensor output and can used
for the adjustment of the camera lenses. Therefore, we are using blinking lights
to get focused camera (depth of field is infinity). The input AE frames for the
algorithms are shown in figure 3.

background near far

left_input right_input disp_out_sadleft_centers right_centers left_input right_input

(a) (b) (c) (d) (e) (f)

(g)

Fig. 3. (a,b): Input pair for the feature-based algorithm. (c,d): Segment centers as
disparity representatives. (e,f): Input pair for the area-based algorithm. (g): Disparity
output of the SAD.

4.2 Results of the area-based approach

The algorithm parameter of the SAD is the correlation window size. We tested
the algorithm with an object at three different distances (2m, 4m, 6m) and
different settings of the address event converter.

In figure 4 the results of the SAD algorithm processing AE frames are given.
On the x-axis the different converter settings at three different distances are
shown. The first number represents the object distance in meters, the second



value describes the time period for collecting address events and the last value
represents the graystep for the accumulation function described in section 2.2.
For each distance all four converter settings with four different SAD correlation
window sizes are tested. The output on the y-axis is the average relative error
of the distance estimation based on 500 image pairs.

The results in figure 4 show that the average relative disparity error increases
with the distance of the object. In near distances the results are influenced by
the correlation window size, especially there is a significant difference between
the usage of a 3× 3 window and a 9 × 9 window. In the distance of 4m and 6m

the results with a timestamp collection time ∆t of 20ms are better. The third
parameter of the generated input AE frame is the grayscale step size which has
no influence at any distance. Generally we reach with the SAD stereo matching
approach used for AE frames in the main operating distance of 4m an minimal
error of 8%. That is equivalent to an estimated distance range of 3.68m-4.32m.
In figure 3 (e,f,g) an example of an input stereo pair for the area-based algorithm
and the SAD disparity output are shown.
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Fig. 4. Results of the area-based stereo matching algorithm on address event frames.

4.3 Results of the feature-based approach

This section shows results of the feature-based stereo matching on AE frames.
The algorithm parameter of the feature center matching is the morphological
erosion and dilation function at the beginning of the algorithm.



In figure 5 the results of the feature-based algorithm processing AE frames
are given. For the center matching only the collecting time period ∆t of the ad-
dress events is varied, which is shown with the second value from the descriptors
on the x-axis. All converter settings with three different morphological erosion
and dilation settings are tested. The structuring element is always a square. The
results on the y-axis shows the average relative disparity error of the feature
center matching at three different distance with two different address converter
settings and with three different morphological function combinations. The re-
sults are based on 500 image pair samples.

The results in figure 5 show that the average relative disparity error depends
on the sizes of the structuring elements. At all distances the morphological com-
bination erosion=3 and dilation=5 produces the best results. The timestamp
collection time ∆t has only a significant influence at the distance of 6m. In the
main operating distance of 4m the minimal error is 17%. That is equivalent to
an estimated distance range of 3.32m-4.68m. In figure 3 (a,b,c,d) an example of
an input stereo pair for the feature-based algorithm and the segment centers are
shown.
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Fig. 5. Results of the feature-based stereo matching algorithm on address event frames.

5 Future work

As presented in this paper, several algorithms which are suited for monochrome
or color stereo matching can be used for silicon retina image processing, too.
The algorithms have to be adapted and the address event representation of the
information has to be converted to conventional data structures representing
images (AE frames). This conversion is a time-consuming process and therefore,
the advantage of the asynchronous data delivery and high temporal resolution
of the silicon retina sensor is not used very efficiently. Additionally, the results
showed us, that the feature-based approach produces errors, which are too high
for the estimation of the distance. The area-based approach is better and the



estimated distances are precise enough for the usage in the distance estimation
of approaching objects.

In the next step we will analyze how we can process the delivered data from
the silicon retina camera in a more efficient way. For this reason we want to
design an algorithm which can handle the asynchronous data and processes each
incoming event without any frame generation strategies. Additionally we would
like to implement a suitable calibration and rectification step for the silicon retina
stereo vision system, which makes a more exact distance estimation possible.
The next version of the algorithm shall run on an embedded platform based on
a TMS320C64x+ DSP core from Texas Instruments for the evaluation of real
time capabilities.
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